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Abstract

We use Grassmann algebra to study the phase transition in the two-dimensional
ferromagnetic Blume–Capel model from a fermionic point of view. This model
presents a phase diagram with a second-order critical line which becomes first
order through a tricritical point. In particular, we are able to map the spin-1
system of the BC model onto an effective fermionic action from which we
obtain the exact mass of the theory. The condition of vanishing mass defines
the critical line. This effective action is actually an extension of the free fermion
Ising action with an additional quartic interaction term. The effect of this term
is merely to render the excitation spectrum of the fermions unstable at the
tricritical point. The results are compared with recent numerical Monte Carlo
simulations.

PACS numbers: 02.30.Ik, 05.50.+q, 05.70.Fh

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The Blume–Capel (BC) model is a classical spin-1 model, originally introduced to study phase
transitions in specific magnetic materials with a possible presence of non-magnetic states
[1, 2]. Its modification was also used to qualitatively explain the phase transition in a mixture
of He3–He4 adsorbed on a two-dimensional (2D) surface [3]. Below a concentration of 67%
in He3, the mixture undergoes a so-called λ transition: the two components separate through
a first-order phase transition and only He4 is superfluid. On a 2D lattice representing a helium
film, He atoms are modelled by a spin-like variable, according to the following rule: a He3
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atom is associated to the value 0, whereas a He4 atom is represented by a classical Ising spin
taking the values ±1. Within this framework, all the lattice sites are occupied either by a He3 or
He4 atom [3]. The 2D Blume–Capel model describes the behaviour of this ensemble of spins
{Smn = 0,±1}. In addition to the usual nearest-neighbour interaction, its energy includes the
term �0

∑
mn S2

mn, with S2
mn = 0, 1, to take into account a possible change in the number of

vacancies. �0 can be thought of as a chemical potential for vacancies or as a parameter of the
crystal field in a magnetic interpretation. A simple analysis of the 2D BC Hamiltonian already
shows that this model presents a rather complex phase diagram in the plane (T ,�0), where T
is the temperature in the canonical ensemble [4]. In the limit �0 → −∞, the values Smn = 0
are excluded and the standard 2D Ising model is recovered, with its well-known second-order
critical point at (T ,�0) = (Tc = 2/ log(1 +

√
2) � 2.269,−∞), with the parameters taken in

units of the Ising exchange energy J . At zero temperature, a simple energy argument shows that
the ground state is the Ising like ordered state |Smn| = 1 if �0 < 2, and |Smn| = 0 else. There
is therefore a first-order phase transition at (T ,�0) = (0, 2), suggesting a change in the order
of the transition at some tricritical point of the critical line at finite temperature. Mean-field
theory confirms this behaviour, and provides a second-order transition line in the plane (T ,�0)

in the region �0 < 0, extending a little in the positive sector [1–5]. Beyond the tricritical point,
as dilution increases, the transition becomes first order. Precise numerical simulations have
been performed to study the phase diagram and to locate the tricritical point [6–10]. From
theoretical backgrounds, several approximations have been used as well, such as mean-field
theory [1–5], renormalization group analysis [11, 12] and high temperature expansions [13].
Using correlation identities and Griffith’s and Newman’s inequalities, rigorous upper bounds
for the critical temperature have been obtained by Braga et al [14]. It was argued that exactly
at the tricritical point the BC model falls into the conformal field theory (CFT) scheme of
classification of the critical theories in two dimensions [15, 16]. This is the case m = 4 and
c = 7/10, where c is the central charge [16, 17]. The CFT interpretation also implies a specific
symmetry called super-symmetry in the 2D BC model at the tricritical point [17, 18]. The
advanced theoretical methods like the bootstrap approach and perturbed conformal analysis in
combination with integrable quantum field theory and numerical methods have been applied
to study the scaling region and the RG flows in the 2D BC universality class [19–21].

The BC model is also directly related to percolation theory [22] and the dilute Potts model
[23], where tricritical point properties are observed for percolating clusters of vacancies. We
also mention quantitative results that match the universality class at the tricritical point of
the BC model with that of a 2D spin fluid model representing a magnetic gas–fluid coexistence
transition [24], or similarities between BC phase diagram and Monte Carlo results on the
extended Hubbard model on a square lattice [25].

The aim of this paper is to present a different analytical method for the BC model in
two dimensions with the use of the anti-commuting Grassmann variables, originally proposed
for the classical 2D Ising model in the case of free fermions [26, 27] and since then used to
treat various problems around the 2D Ising model, such as finite size effects and boundary
conditions [28, 29], quenched disorder [30, 31], boundary magnetic field [32, 33]. In contrast
with the use of traditional combinatorial and transfer-matrix considerations [34–36, 38], this
method is rather based on a direct introduction of Grassmann variables (fermionic fields)
into the partition function Z to decouple the spin degrees of freedom. A purely fermionic
integral for Z then obtained by averaging on spin degrees of freedom in the resulting mixed
spin-fermion representation for Z [26, 27]. This method turns out to be particularly efficient to
deal with models with nearest-neighbour interactions in the 2D plane. For the 2D Ising model,
the integral for Z appears to be a Gaussian integral over Grassmann variables. Respectively,
the model is solvable and a Fourier transformation of the Grassmann variables in the action

2



J. Phys. A: Math. Theor. 41 (2008) 405004 M Clusel et al

allows for a complete calculation of the partition function [37, 38]. In physical language, this
corresponds to the case of free fermions [37, 38].

As the additional crystal field term in the BC Hamiltonian is local, we hoped that the
method will be applicable as well in this context. Though it is not possible to compute
exactly the partition function and thermodynamics quantities of the BC model directly, since
the resulting fermionic action for BC is non-Gaussian, our approach allows to derive in
a controlled way physical informations from the underlying fermionic lattice field theory
with interaction. In the continuum limit, a simplified effective quantum field theory can be
constructed and analysed in the low energy sector. The condition of vanishing mass leads to
the exact equation for the critical line, and the effective interaction between fermions, to the
existence of a tricritical point. The effects of interaction are analysed in the momentum-space
representation. An approximate scheme such as Hartree–Fock–Bogoliubov (HFB) method
can be used to locate the tricritical point. There are also some analogies, albeit rather formal,
with approaches typically used in the context of BCS theory of ordinary superconductivity. In
general, it is interesting to note that in 2D, a phase diagram of the BC model with first-order
transition and tricritical point can be described not only with a bosonic �6 Ginzburg–Landau
theory where the order parameter is a simple scalar [39, 40], but also with the use of fermionic
variables.

The paper is organized as follows. After presenting the BC Hamiltonian and the related
partition function in standard spin-1 interpretation, we apply the fermionization procedure
leading to the exact fermionic action on the lattice. We then derive the effective action in
the continuum limit and extract the exact mass. The condition of zero mass already gives
the equation for the critical line in the (T ,�0) plane. The effective action also includes
four-fermion interaction due to the S2 = 0 states (vacancies) in the system. We then give a
physical interpretation for the existence of a tricritical point on the phase diagram, by studying
the fermionic stability of the BC spectrum on the critical line at order k2 in momentum. Our
results are then compared with recent numerical Monte Carlo simulations [6–10].

2. The 2D Blume–Capel model

2.1. Hamiltonian and partition function

The 2D BC model is defined, on a square lattice of linear size L, via the following Hamiltonian:

H = −
L∑

m=1

L∑
n=1

[J1SmnSm+1n + J2SmnSmn+1] + �0

L∑
m=1

L∑
n=1

S2
mn. (1)

In the above expression, Smn = 0,±1 is the BC spin-1 variable associated with the (m, n)

lattice site coordinates, where m, n = 1, . . . , L are running in the horizontal and vertical
directions, respectively. The spins are interacting along the lattice bonds, J1,2 > 0 are the
ferromagnetic exchange energies. In addition to the usual Ising spins with Smn = ±1, there
are as well non-magnetic sites Smn = 0, which we shall also refer to as vacancies. The
crystal field parameter �0 plays the role of a chemical potential, being responsible for
the level splitting between states Smn = 0 and Smn = ±1. The Hamiltonian that appears
in the Gibbs exponential may be written in the form:

−βH =
L∑

m=1

L∑
n=1

[K1SmnSm+1n + K2SmnSmn+1] + �

L∑
m=1

L∑
n=1

S2
mn, (2)

where K1,2 = βJ1,2 are now the temperature dependent coupling parameters, β = 1/T

is inverse temperature in the energy units, and � = −β�0. In the following we mainly
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focus on the ferromagnetic case, with positive J1,2 > 0 and K1,2 > 0. Note however that
the fermionization procedure by itself is valid irrespective of the signs of interactions.4 The
positive � (negative �0) is favourable for the appearance of the Ising states in the system,
with the ordered phase below the critical line in the (T ,�0) plane, at low temperatures, while
negative � (positive �0) will suppress Ising states, being favourable for vacancies. In the
limit �0 → −∞ (or � → +∞) the states with S2

mn = 0 are effectively suppressed and
the model reduces to the 2D Ising model, with the critical temperature being defined by the
condition sinh 2K1 sinh 2K2 = 1. As �0 increases to finite values, there will be a line of phase
transitions in the (T ,�0) plane. The critical line goes to lower temperatures as parameter �0

increases and terminates at �0 = J1 + J2 at zero temperature, so that all sites are empty at
larger positive values of �0 at T = 0. A remarkable feature of the BC model is that there is
also a tricritical point on the critical line somewhere slightly to the left from �0 = J1 + J2,
where the transition changes from second to first order.

The partition function Z of the BC model is obtained by summing over all possible spin
configurations at each site, Z = ∑{Smn=0,±1} e−βH ≡ Tr

{S}
e−βH . It is easy to develop each

Boltzmann factor appearing in the above trace formula in a polynomial form:

exp(KiSS ′) = 1 + λiSS ′ + λ′
iS

2S ′2, i = 1, 2, (3)

with

λi = sinh Ki, λ′
i = cosh Ki − 1, i = 1, 2. (4)

The partition function is then given by the trace of the product of above spin-polynomial
Boltzmann weights:

Z = Tr
{Smn=0,±1}

{
L∏

m=1

L∏
n=1

e�S2
mn

[(
1 + λ1SmnSm+1n + λ′

1S
2
mnS

2
m+1n

)

× (1 + λ2SmnSmn+1 + λ′
2S

2
mnS

2
mn+1

)]}
. (5)

This expression will be the starting point of the fermionization procedure for Z using
Grassmann variables we develop in section 3. As a first step we introduce new Grassmann
variables to decouple the spins in the local polynomial factors of expression (5). The second
step is to sum over spin states in the resulting mixed spin-fermion representation for Z to
obtain a purely fermionic theory for Z.

2.2. Local spin decomposition

In what follows, we need to average partially fermionized Z over the spin states at each site.
This averaging will be performed in two steps, first we keep in mind to average over the Ising
degrees of freedom, Smn = ±1, then adding the contribution of vacancies, Smn = 0. The two
cases may be also distinguished in terms of variable S2

mn = 0, 1. In this subsection, we make
a comment on the formalization of this two-step averaging. Provided we have any function of
the BC spin-1 variable f (Smn), with Smn = 0,±1, the averaging rule is simple:∑

Smn=0,±1

f (Smn) = f (0) + f (+1) + f (−1). (6)

4 In what follows, making approximations in the resulting fermionic integrals, and by presenting the numerical
results, we shall typically assume the isotropic case in the above Hamiltonians, with J = J1 = J2, K = K1 = K2
and K = βJ . We will also use, in some cases, the dimensionless parameters normalized by the exchange energy J

for temperature T and chemical potential �0.
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In forthcoming procedures, we ought to average first over the states Smn = ±1 at each site,
provided S2

mn = 1, while making the sum over choices S2
mn = 0, 1 at next stage. In principle,

since Smn = sign{Smn}|Smn|, with sign{Smn} = ±1 and |Smn| = S2
mn = 0, 1, we can try simply

to write Smn = ymnσmn, where ymn = 0, 1, and σmn = ±1, and to average over the component
states ymn = 0, 1 and σmn = ±1 as independent variables. This gives:∑

ymn=0,1;σmn=±1

f (ymnσmn) = f (+0) + f (−0) + f (+1) + f (−1). (7)

We see that the zero state is counted twice, in contradiction to (6). This may be corrected by
introducing in the definition of the averaging the weight factor 1

2 at ymn = 0. Equivalently,
this may be done by adding 2−1+ymn under the sum. This results the sum of three terms in
agreement with (6):∑

ymn=0,1;σmn=±1

2−1+y2
mnf (σmnymn) = f (0) + f (+1) + f (−1). (8)

In fact, this decomposition scheme with Smn = σmnymn and independently varying σmn = ±1
and ymn = 0, 1 is somewhat more close to the situation for the two-dimensional Ising model
with quenched site dilution [30, 31]. In that case σmn = ±1 is simply the Ising spin, while
the variable ymn = 0, 1 is the quenched dilution parameter, counting whether the given site is
occupied or dilute, and both averaging rules (7) and (8) can be interpreted physically. The case
(7) means simply that there is a spin σmn = ±1 also at site ymn = 0, which is not interacting
with its nearest neighbours. This empty, or rather disconnected, site, by flipping over two
states ±1 under temperature fluctuations, will give however a contribution to the entropy, ln 2
by empty site. Case (8) means that the site ymn = 0 is really dilute, or empty, with no spin
degree of freedom at it, even disconnected.

For the quenched dilute 2D Ising model, the quenched averaging over some fixed
temperature-independent distribution ymn = 0, 1 is distinct from the σmn = ±1 averaging, and
is assumed to be performed on −βF = ln Z, but not on Z itself. The situation is different for
the BC model, which is rather the annealed case of the site dilute Ising model, with averaging
simultaneously over all the states Smn = 0,±1 at each site for Z itself. In this case the
averaging is to be performed strictly according to the rules of (6) and (8), but not (7).

There is still another way to formalize the averaging over the possibilities Smn = ±1
before we actually perform the sums S2

mn = 0, 1. It is based on the observation that the result
of the averaging (6) will not be changed if we replace Smn → σmnSmn, with σmn = ±1, since
the sum includes Smn = ±1 anyhow∑
Smn=0,±1

f (Smn) =
∑

Smn=0,±1

f (σmnSmn) = f (0) + f (+1) + f (−1), σmn = ±1. (9)

Though the above equation holds already for any fixed value of σmn = ±1, we can as well
average it over the states σmn = ±1, introducing factor 1

2 for normalization. The averaging of
f (σmnSmn) itself gives
1

2

∑
σmn=±1

f (σmnSmn) = 1

2
[f (Smn) + f (−Smn)] = g

(
S2

mn

)
, S2

mn = 0, 1. (10)

The result of the averaging will be a function g which only depends on |Smn| = 0, 1, alias
S2

mn = 0, 1, but not on the sign{Smn}. In terms of g
(
S2

mn

)
, equation (9) results∑

Smn=0,±1

f (Smn) =
∑

Smn=0,±1

{
1

2

∑
σmn=±1

f (σmnSmn)

}
= g(0) + 2g(1). (11)

In this form the two-step averaging will be realized in the procedure of elimination of spin
variables by constructing the fermionic integral for Z in the forthcoming discussion.
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3. Fermionization and lattice fermionic field theory

The expression of the BC partition function Z as a product of spin polynomials under the
averaging as given in (5) will be the starting point of the fermionization procedure for Z. This
procedure has first been introduced in the context of the 2D pure Ising model [26, 27]. It relies
on interpreting each spin polynomial Boltzmann weight in (5) as the result of integration over
a set of two Grassmann variables, which decouples the spins under the integral. Before going
into details, we remind in the following subsection few essential features about Grassmann
variables and the rules of integration.

3.1. Grassmann variables

Mathematically, Grassmann variables may be viewed as formal purely anti-commuting
numbers [41]. In physical aspect, they are images of quantum fermions in path integral
[41]. Let us remember few basic rules for Grassmann variables that are needed in the rest of
the paper. More details can be found in [42, 43].

A Grassmann algebra A of size N is generated by a set of N anti-commuting objects
{a1, a2, . . . , aN } satisfying

aiaj + ajai = 0, a2
i = 0, i, j = 1, 2, . . . , N. (12)

Unlike quantum fermions, Grassmann variables are totally anti-commuting. Note that any
linear superpositions of the original variables (12) are again purely anti-commuting, with each
other and with the original variables. Their squares are zeros too. Functions defined on such
an algebra are particularly simple, they are always polynomials with a finite degree (since
a2

i = 0). It is possible to define the notion of integration in algebra of such polynomials with
the following rules [41]:∫

dai · ai = 1,

∫
dai · 1 = 0. (13)

Integral with many variables is considered as a multilinear functional with respect to each of
the variables involved into integration. In multiple integrals, the fermionic differentials are
again anti-commuting with each other and the variables themselves. The integration of any
polynomial function of Grassmann variables like f (a) = f (a1, a2, . . . , aN) then reduces, in
principle, to a repeating use of the above rules.

The rules of change of variables in Grassmann variable (fermionic) integrals under a
linear substitution are similar to the analogous rules of common commuting analysis. The
only difference is that the Jacobian of the transformation will enter now in the inverse power,
contrarily to the commuting (bosonic) case [40–43].

With the above definitions, Gaussian integrals over Grassmann variables are all expressed
by equations relating them to determinants and Pfaffians. The basic identity for the integral
of first kind reads

∫ N∏
i=1

da∗
i dai exp

⎛
⎝ N∑

i,j=1

aiAij a
∗
j

⎞
⎠ = det A, (14)

where the integration is over the doubled set of totally anti-commuting variables {a, a∗}, the
(square) matrix A in the exponential being arbitrary. In applications, quadratic fermionic form
in the exponential like in (14) is typically called action. Since the action is quadratic, the
integral is Gaussian. Since the action is quadratic, the integral is Gaussian. The exponential
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in (14) is assumed in the sense of its series expansion. Due to nilpotent properties of fermions,
the exponential series definitely terminates at some stage, thus resulting a finite polynomial
in variables involved under the integral. (With respect to the action S = aAa∗ taken as a
whole, the last nonzero term will be with SN 	= 0, while SN+1 = 0. Alternatively, the same
polynomial for the exponential from (14) will follow by multiplying elementary factors like
exp(aiAij a

∗
j ) = 1 + aiAij a

∗
j ). In physical interpretation, the integral of the first kind (14) with

complex-conjugate fields rather corresponds to Dirac theories. The Majorana theories with
real fermionic fields are presented by the Gaussian integrals of the second kind related to the
Pfaffian. The fermionic integral of the second kind reads

∫ ←−
N∏

i=1

dai exp

⎛
⎝ N∑

i,j=1

1

2
aiAij aj

⎞
⎠ = Pf A. (15)

The integration is over the set of even number N of Grassmann variables. Arrow in the
measure indicates the direction of ordering of the anti-commuting differentials. Due to anti-
commutation relations the matrix in the exponential is now assumed skew-symmetric, with
Aij + Aji = 0, and Aii = 0. The result of integration is the Pfaffian associated with the
skew-symmetric matrix A. In physics, the combinatorics of the Pfaffian also is well known
under the name of the (fermionic) Wick’s theorem.

In a combinatorial sense, the determinant is actually a particular case of the Pfaffian.
Respectively, the integral (14) is a subcase of the integral (15). It can be shown that
(PfA)2 = det A for any skew-symmetric matrix A. This implies that in principle, an integral
of the second kind (15) can always be reduced to an integral of first kind (14) by doubling
the number of fermions in (15). In applications like in the Ising and BC models where the
original integrals in the real lattice space naturally appear in the Pfaffian like form of (15), this
reduction to the first case occurs automatically after transformation to the momentum space,
where the fermionic variables are typically combined into groups of variables with opposite
momenta (k,−k), which play the role of the conjugated variables like in (14). In practice
however, for low-dimensional integrals, most of calculations can be performed simply from
the definition of the integral, by expanding the integrand functions into polynomials.

3.2. Fermionization procedures

In the same spirit as for the 2D Ising model [27], we introduce two pairs of Grassmann
variables per site (amn, āmn), and (bmn, b̄mn) to factorize the polynomials appearing in (5).
Namely we use the relations

1 + λ1SmnSm+1n + λ′
1S

2
mnS

2
m+1n =

∫
dāmn damn e(1+λ′

1S
2
mnS

2
m+1n)amnāmn

× (1 + amnSmn)(1 + λ1āmnSm+1n),

1 + λ2SmnSmn+1 + λ′
2S

2
mnS

2
mn+1 =

∫
db̄mn dbmn e(1+λ′

2S
2
mnS

2
mn+1)bmnb̄mn

× (1 + bmnSmn)(1 + λ2b̄mnSmn+1). (16)

For the sake of simplicity in the notation, let us introduce the following link factors:

Amn = 1 + amnSmn, Ām+1n = 1 + λ1āmnSm+1n,
(17)

Bmn = 1 + bmnSmn, B̄mn+1 = 1 + λ2b̄mnSmn+1.

7
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We also define the Grassmann local trace operators which associate with any function f on
the Grassmann algebra as follows:

Tr
(amn)

[f (amn, āmn)] =
∫

dāmn damn e(1+λ′
1S

2
mnS

2
m+1n)amnāmnf (amn, āmn),

(18)
Tr

(bmn)
[f (bmn, b̄mn)] =

∫
db̄mn dbmn e(1+λ′

2S
2
mnS

2
mn+1)bmnb̄mnf (bmn, b̄mn).

The factorized Boltzmann weights from (16) then read:

1 + λ1SmnSm+1n + λ′
1S

2
mnS

2
m+1n = Tr

(amn)
[AmnĀm+1n],

(19)
1 + λ2S

2
mnS

2
mn+1 + λ′

2S
2
mnS

2
mn+1 = Tr

(bmn)
[BmnB̄mn+1].

Introducing the above Grassmann factors into the original expression (5) for Z, we obtain
a mixed representation containing both spins and Grassmann variables for Z. Note that as the
separable link factors like Amn, Āmn, Bmn, B̄mn are neither commuting or anti-commuting with
each other, the order in which they appear in the product may be important. The factorized
bond weights, however, presented in (19) by doubled link factors under the trace operators, are
totally commuting, if taken as a whole, with any element of the algebra under the averaging.
For the whole lattice, we define the global trace operator as follows:

Tr
(a,b)

[
f
] =
∫ L∏

m=1

L∏
n=1

dāmn damn db̄mn dbmn e�S2
mnf (amn, āmn, bmn, b̄mn)

× exp

{
L∑

m=1

L∑
n=1

[(
1 + λ′

1S
2
mnS

2
m+1n

)
amnāmn +

(
1 + λ′

2S
2
mnS

2
mn+1

)
bmnb̄mn

]}
.

(20)

The all even-power terms in spin variables are now incorporated into the generalized Gaussian
averaging measure of (20), including the term with chemical potential. The partition function
is given by

Z = Tr
{S}

Tr
(a,b)

⎡
⎣

−→
L∏

n=1

⎛
⎝

−→
L∏

m=1

((AmnĀm+1n)(BmnB̄mn+1))

⎞
⎠
⎤
⎦ . (21)

At this stage the factorized partition function appears as a double trace, over the spin degrees
of freedom, with Tr{S}, and over the Grassmann variables, with Tr(a,b). The idea of the next
step is to make spin summation in (21) to obtain a purely fermionic integral for Z.

3.3. The ordering of factors

Up to now we have only added extra Grassmann variables to obtain the mixed expression
(21) where the spin variables are actually decoupled into separable link factors like (17).
Further algebraic manipulations are necessary to simplify this expression in order for the spin
averaging to be possible in each group of factors with the same spin. For any given mn, there
are four such factors, Amn, Bmn, Āmn, B̄mn, which all include the same BC spin Smn = 0,±1.
We apply the mirror-ordering procedure [26, 27] to move together, whenever possible, the
different link factors containing the same spin. Separable link factors like (17) are in general
neither commuting nor anti-commuting with each other. Doubled combinations representing
the bond weights in (19) like AmnĀm+1n or BmnB̄mn+1, are however effectively commuting
with any element of the algebra, if taken as a whole: commutation does not change the results
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of the Gaussian fermionic averaging (20). We use mirror-ordering decoupling for factors in
vertical direction, BmnB̄mn+1, with respect to n, insert the commuting factorized horizontal
weights, AmnĀm+1n, and reread the resulting products in few subsequent transformations
[26, 27]. This leads to

Z = Tr
{S}

Tr
(a,b)

{
L∏

m=1

L∏
n=1

[(AmnĀm+1n)(BmnB̄mn+1)]

}
,

= Tr
{S}

Tr
(a,b)

⎧⎨
⎩

−→
L∏

n=1

⎡
⎣

−→
L∏

m=1

B̄mnAmnĀm+1n ·
←−

L∏
m=1

Bmn

⎤
⎦
⎫⎬
⎭ ,

= Tr
{S}

Tr
(a,b)

⎡
⎣

−→
L∏

n=1

⎛
⎝
⎛
⎝

−→
L∏

m=1

ĀmnB̄mnAmn

⎞
⎠ ·
⎛
⎝

←−
L∏

m=1

Bmn,

⎞
⎠
⎞
⎠
⎤
⎦ . (22)

Going from (21) to (22) one has to pay attention to boundary terms. The simplest case
corresponds to free boundary conditions for spin variables, SL+1n = SmL+1 = 0 in (5): it
corresponds to free boundary conditions for fermions, ā0n = b̄m0 = 0, in (22). For these
boundary conditions, the transformation from (21) to (22) is actually exact. In the following
however, we will typically use periodic boundary conditions for fermions in representations
like (22), which are suitable when passing to the Fourier space for anti-commuting (Grassmann)
fields. The change of the boundary conditions is inessential anyway in the limit of infinite
lattice, L → ∞. In principle, one can pay more attention to the effects of the boundary terms
in the periodic case, which can actually be treated rigorously for finite lattices [27, 29, 32, 33].

In the case of the 2D Ising model, with S2
mn = 1, we can explicitly perform the trace

over the Ising spin degrees of freedom Smn = ±1 recursively at the junction of two m-ordered
products in the final line of (22). The situation is slightly different in the BC case: trace operator
(20) contains terms with S2

mn = 0, 1 which are coupled at neighbouring sites. Therefore it is
not possible to trace over the whole set of states Smn = 0,±1 in the BC case directly in (22).
We can eliminate first the Ising degrees σmn = sign{Smn} = ±1. The occupancy variables
S2

mn = 0, 1 will still remain as parameters and will be eliminated at next stages.

3.4. Spin summation

At the junction of the two ordered products in (22), with Smn → σmnSmn, we perform the
trace σmn = ±1 recursively, for m = L,L−1, . . . , 2, 1, for any given n, starting with m = L.
The procedure will then be repeated for other values of n = 1, 2, . . . , L. We recover then
the four factors Āmn, B̄mn, Amn, Bmn (17), with the same spin that met at the junction of the
two m-product in (22), for given n. Then we multiply the above four factors, taking also into
account that σ 2

mn = 1, so that S2
mn → σ 2

mnS
2
mn → S2

mn, and sum over the states σmn = ±1.
This will eliminate all odd terms in the polynomial so obtained. The averaging leads to
1

2

∑
σmn=±1

ĀmnB̄mnAmnBmn

= 1 + S2
mnamnbmn + S2

mn(λ1ām−1n + λ2b̄mn−1)(amn + bmn)

+ S2
mnλ1λ2ām−1nb̄mn−1 + S4

mnλ1λ2amnbmnām−1nb̄mn−1,

= exp
[
S2

mn(amnbmn + (λ1ām−1n + λ2b̄mn−1)(amn + bmn) + λ1λ2ām−1nb̄mn−1)
]
.

(23)

The resulting even fermionic polynomial can be written as a Gaussian exponential, as shown
in the final line. This term is totally commuting with all other elements of the algebra and

9
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can be removed outside of the junction. The BC spins still remain in the form of S2
mn = 0, 1

in (23), but the Ising degrees, σmn = ±1, are already eliminated. After completing the above
averaging procedure at the junction at m = L, we repeat the calculation for m = L−1, . . . , 1,
for given n, and then for other values of n = 1, . . . , L. Adding the diagonal terms from the
definition of the fermionic averaging (20), the partially traced partition function finally reads

Z = 2L2
Tr

{S2=0,1}

∫ L∏
m,n=1

dāmn damn db̄mn dbmn exp
[
�S2

mn +
(
1 + λ′

1S
2
mnS

2
m+1n

)
amnāmn

+
(
1 + λ′

2S
2
mnS

2
mn+1

)
bmnb̄mn + S2

mn(λ1ām−1n + λ2b̄mn−1)(amn + bmn)

+ S2
mnamnbmn + S2

mnλ1λ2ām−1nb̄mn−1
]
. (24)

The resulting integral for Z in (24) is a Gaussian integral, which includes the variables
S2

mn = 0, 1 as parameters. At this stage, it is easy to recognize that the 2D Ising model is
solvable: in this case S2

mn = 1 for all sites, so that the partition function (24) no longer contains
spin degrees of freedom. It can then be readily evaluated by passing to the momentum space
[26, 27]. In the BC model case, it remains yet to eliminate S2

mn = 0, 1 degrees of freedom
in the above expression (24). This can be performed after we manage to decouple the
variables in terms including S2

mnS
2
m+1n and S2

mnS
2
mn+1. Several methods are possible. One

way is to introduce another auxiliary set of Grassmann link variables, similarly to what we
previously did to decouple the factors SmnSm+1n and SmnSmn+1 in (16). It is possible however
to avoid the introduction of the new fields by performing the following change of Grassmann
variables in (24): amn → amn

/
S2

mn, bmn → bmn

/
S2

mn, damn → S2
mndamn, dbmn → S2

mndbmn.

The variable S2
mn then disappears in some places inside the exponential and appears in

others, the terms with S2
mnS

2
m+1n and S2

mnS
2
mn+1 being now decoupled. Note that the

resulting seemingly singular expressions like S2
mn exp

(
amnāmn

/
S2

mn

)
are to be understood

as S2
mn exp

(
amnāmn

/
S2

mn

) = S2
mn

(
1 + amnāmn

/
S2

mn

) = S2
mn + amnāmn. Finally, after shifting

some indices in the total mn sums in the exponential, we obtain

Z = 2L2
Tr

{S2=0,1}

∫ L∏
m,n=1

dāmn damn db̄mn dbmn

(
S2

mn + amnāmn

)(
S2

mn + bmnb̄mn

)
× exp

[
�S2

mn + S2
mn(λ

′
1am−1nām−1n + λ′

2bmn−1b̄mn−1 + λ1λ2ām−1nb̄mn−1)
]

× exp[amnbmn + (λ1ām−1n + λ2b̄mn−1)(amn + bmn)]. (25)

In this expression, we can already locally perform the sum over S2
mn = 0, 1 at each site, using

rules like (8) in order to avoid counting twice the contribution of S2
mn = 0 states∑

{S2
mn=0,1}

{
2S2

mn

[(
S2

mn + amnāmn

)(
S2

mn + bmnb̄mn

)]
× exp

[
S2

mn

(
� + λ′

1am−1nām−1n + λ′
2bmn−1b̄mn−1 + λ1λ2ām−1nb̄mn−1

)]}
= amnāmnbmnb̄mn + 2 e� eGmn . (26)

The first term is that produced at dilute site with S2
mn = 0. The polynomial Gmn in final line

stands for the local part of the action resulting at the Ising site with S2
mn = 1

Gmn = amnāmn + bmnb̄mn + λ1λ2ām−1nb̄mn−1 + λ′
1am−1nām−1n + λ′

2bmn−1b̄mn−1. (27)

The result of the averaging from (26) can as well be written as a unique exponential taking
into account the nilpotent property of fermions

amnāmnbmnb̄mn + 2 e� eGmn = 2 e� eGmn
(
1 + 1

2amnāmnbmnb̄mn e−�−Gmn
)

= 2 e� exp
(
Gmn + 1

2amnāmnbmnb̄mn e−�−Gmn
)

= 2 e� exp
(
Gmn + 1

2 e−�amnāmnbmnb̄mn e−G′
mn

)
. (28)
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with

G′
mn = λ′

1am−1nām−1n + λ′
2bmn−1b̄mn−1 + λ1λ2ām−1nb̄mn−1. (29)

Substituting this result into (25) and shifting the mn index once again in some of the diagonal
terms of the resulting combined action, we obtain

Z = 2L2
eL2�

∫ L∏
m=1

L∏
n=1

dāmn damn db̄mn dbmn exp

{
L∑

m=1

L∑
n=1

[(1 + λ′
1)amnāmn

+ (1 + λ′
2)bmnb̄mn + amnbmn + (λ1ām−1n + λ2b̄mn−1)(amn + bmn)

+ λ1λ2ām−1nb̄mn−1 + ḡ0amnāmnbmnb̄mn exp(−λ′
1am−1nām−1n

− λ′
2bmn−1b̄mn−1 − λ1λ2ām−1nb̄mn−1)]

}
, (30)

with

ḡ0 = e−�/2, � = −β�0. (31)

This is already a purely fermionic integral for Z, since spin degrees of freedom being completely
eliminated. To simplify the comparison with the 2D Ising model and for other needs, we may
rescale some of the Grassmann variables under the integral using the following transformation:

(1 + λ′
1)āmn → āmn, (1 + λ′

2)b̄mn → b̄mn. (32)

The corresponding differentials are to be rescaled with inverse factors. In this way, we obtain
the final result

Z = (2 e� cosh K1 cosh K2)
L2
∫ L∏

m=1

L∏
n=1

dāmn damn db̄mn dbmn

× exp

{
L∑

m=1

L∑
n=1

[
amnāmn + bmnb̄mn + amnbmn

+ (t1ām−1n + t2b̄mn−1)(amn + bmn) + t1t2ām−1nb̄mn−1 + g0amnāmnbmnb̄mn

× exp(−γ1am−1nām−1n − γ2bmn−1b̄mn−1 − t1t2ām−1nb̄mn−1)]

}
, (33)

or in a compact form

Z = (2 e� cosh K1 cosh K2)
L2
∫

DāDaDb̄Db exp(SIsing + Sint),

where we have also introduced the following constants:

g0 = e−�

2 cosh K1 cosh K2
, γi = 1 − 1

cosh Ki

= 1 −
√

1 − t2
i , ti = tanh Ki. (34)

Note that the fermionic integrals (31) and (33) are still the exact expressions for Z, even for
finite lattices, provided we assume free boundary conditions both for spins and fermions. We
can recognize in (33) the Ising action, which here appears as the Gaussian part of the total
action [26, 27]

SIsing =
L∑

m,n=1

amnāmn + bmnb̄mn + amnbmn

+ (t1ām−1n + t2b̄mn−1)(amn + bmn) + t1t2ām−1nb̄mn−1, (35)

11
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and the non-Gaussian interaction part of the total action, which is a polynomial of degree 8 in
Grassmann variables (after expanding the exponential)

Sint = g0

L∑
m,n=1

amnāmnbmnb̄mn e−γ1am−1nām−1n−γ2bmn−1b̄mn−1−t1t2ām−1nb̄mn−1 . (36)

The BC model differs from the Ising model by the interaction term in the action (36) which
is not quadratic. Therefore the BC model is not solvable in the sense of free fermions, unlike
the 2D Ising model.

It may be still of interest to recognize the structure of the phase diagram of the
BC model directly from the fermionic integrals (31)–(36) before actual calculation. The
interaction is introduced in the above BC integral (33) for Z with the coupling constant
g0 ∝ exp[β(�0 − J1 − J2)]. In the limit � → ∞, or �0 → −∞, which corresponds to
g0 = 0, the gap between the two degenerate states S = ±1 and the blockt state S = 0 becomes
so large that the model reduces effectively to the 2D Ising model. For �0 finite, the coupling
constant g0 is finite and the presence of the vacancy states become possible. The coupling
constant g0 increases as the number of the vacancies in a typical configuration of a system
increases, with increasing �0. At zero temperature, on the other hand, as β → +∞, we
find g0 = 0 for �0 < J1 + J2, which corresponds, again, to the Ising ground state, while for
�0 > J1 + J2 we gain g0 → +∞, which means that the ground sate is empty, with vacancies
only. At finite temperatures, we thus expect that there will be a line of phase transitions in
the (T ,�0) plane, which starts from the Ising critical point at �0 → −∞, and goes lower
with increasing �0, alias increasing g0, and terminates at �0 = J1 + J2 at zero temperature
T = 0. A more sophisticated analysis of the integral (33) will be needed to define the precise
form of the critical line and the existence of the tricritical point at that line with increasing
dilution. In the following, for simplification in the transformations of the integrals, we will
only consider the isotropic coupling case, with K1 = K2 = K, t1 = t2 = t and γ1 = γ2 = γ ,
which corresponds to J1 = J2 = J in the original Hamiltonian (1).

3.5. Partial bosonization

The previous action contains two pairs of Grassmann variables per site. This cannot be
reduced to a one pair (minimal action) unlike for the Ising model, where half of the variables
are irrelevant and can be integrated out already at lattice level without contributing to the
critical behaviour. The point is that the reduced action with two variables per site readily
admits QFT interpretation and simplifies the analysis in the momentum space [30, 37, 38]. In
the BC case, the two pairs of fermions are coupled together by equation (36), preventing a
direct integration over extra variables like amn, bmn. However, as we will see in the following,
it is still possible to recover the minimal Ising like action with a one pair of fermions per
site using auxiliary bosonic variables. In the interaction part of the action (36), it is indeed
tempting to replace the products amnāmn and bmnb̄mn, which are formally looking similar to
occupation number operators, or local densities, by the variables

ηmn = amnāmn, τmn = bmnb̄mn, η2
mn = τ 2

mn = 0. (37)

This new variables ηmn, τmn are nilpotent (as Grassmann variables) but commuting: that is
why we may abusively call them (hard core) ‘bosons’. In the following, we will add also one
more pair of commuting nilpotent fields η̄mn, τ̄mn, to put integrals into a more symmetric form.
This eventually allows us to reduce the degree of polynomials in Grassmann variables by a
factor 2 each time the replacement like (37) is performed. We will see below that, in principle,
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we can write down an exact BC action containing a one pair of Grassmann variables and a one
pair of bosonic ones per site.

To do so, we introduce the following Dirac distribution for any polynomial function f of
amnāmn or bmnb̄mn:

f (amnāmn) =
∫

dηmn dη̄mnf (ηmn) exp[η̄mn(ηmn + amnāmn)],
(38)

f (bmnb̄mn) =
∫

dτmn dτ̄mnf (τmn) exp[τ̄mn(τmn + bmnb̄mn)],

where we assume a natural definition of the integral for commuting nilpotent variables with
the following rules (similar rules are assumed for τmn, η̄mn and τ̄mn):∫

dηmn1 = 0,

∫
dηmnηmn = 1. (39)

For the application of the rules like (39) in the QFT context also see [44]. Applying (38)
directly in (33), we obtain the integral with the following expression for the action:

S =
∑
m,n

[amnāmn + bmnb̄mn + t2ām−1nb̄mn−1 + amnbmn + t (ām−1n + b̄mn−1)(amn + bmn)

+ g0ηmnτmn[1 − γ (ηm−1n + τmn−1) + γ 2ηm−1nτmn−1 − t2ām−1nb̄mn−1]

+ η̄mn(ηmn + amnāmn) + τ̄mn(τmn + bmnb̄mn)]. (40)

We can now integrate over the amn’s and bmn’s, and replace formally, for convenience, the
variables āmn by cmn and b̄mn by −c̄mn. We obtain:

S =
L∑

mn=1

{cmnc̄mn(1 + τ̄mn)(1 + η̄mn) + η̄mnηmn + τ̄mnτmn

+ [cmn(1 + η̄mn) − c̄mn(1 + τ̄mn)]t (cm−1n + c̄mn−1) − t2cm−1nc̄mn−1

+ g0ηmnτmn[1 − γ (ηm−1n + τmn−1) + γ 2ηm−1nτmn−1 − t2cm−1nc̄mn−1]}. (41)

The advantage is that now there are only two fermionic variables per site, which is suitable
for the QFT interpretation. Note that the integral associated with the action (41) will still be
the exact expression for Z. The number of the fermionic variables being reduced, the next
operation is to try to integrate out, whenever possible, the auxiliary bosonic fields from action
(41). In fact we can further integrate over one pair of bosonic variables, for example τmn, τ̄mn,
using the integration rules (38), since∫

dτmn dτ̄mnf (τmn) exp[τ̄mn(τmn − t (cm−1n − c̄mn−1)c̄mn + cmnc̄mn(1 + η̄mn))]

= f [−t (cm−1n − c̄mn−1)c̄mn + cmnc̄mn(1 + η̄mn)]. (42)

There f (τmn) may be any function of nilpotent variable τmn. We could also have chosen to
integrate over the ηmn, η̄mn instead. In any case, integrating over τmn, τ̄mn according to (42),
we finally obtain the reduced integral with the local action

S = cmnc̄mn + t (cmn + c̄mn)(cm−1n − c̄mn−1) − t2cm−1nc̄mn−1

+ η̄mnηmn + η̄mn[c̄mn − t (cm−1n − c̄mn−1)]cmn

+ g0ηmnQmn[1 − γ (ηm−1n + Qmn−1) + γ 2ηm−1nQmn−1 + t2cm−1nc̄mn−1],

with

Qmn = [cmn(1 + η̄mn) − t (cm−1n − c̄mn−1)]c̄mn. (43)
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It is easy to recognize in the first line of (43) the minimal local action for the pure Ising model
[30, 37] with one pair of Grassmann variables per site:

SIsing = cmnc̄mn + t (cmn + c̄mn)(cm−1n − c̄mn−1) − t2cm−1nc̄mn−1. (44)

This is the same action that follows by integrating amn, bmn from (35). The rest of the action
describes the interaction between fermions and bosons

Sint = η̄mnηmn + η̄mncmn[c̄mn + t (cm−1n − c̄mn−1)]

+ g0ηmnQmn[1 − γ (ηm−1n + Qmn−1) + γ 2ηm−1nQmn−1 + t2cm−1nc̄mn−1]. (45)

Bosonic variables can be integrated out in equations (43)–(45) only if g0 = 0. In the
following section, we will apply approximations in order to eliminate completely the auxiliary
commuting nilpotent fields from the action, and will make use of a more symmetric form of
the integration over the bosonic fields, first over η̄mn, τ̄mn, then over ηmn, τmn.

We would like to end this section commenting the previous exact results. We finally
obtained a lattice field theory with action (43) containing the same number of ‘fermions’ (c, c̄)

and ‘bosons’ (η, η̄). Physically, this means that it is indeed possible to describe the system
with fermionic variables for the states S = ±1 and bosonic ones for the third state S = 0.
In the limit �0 → −∞, the system is completely described in terms of fermions. While
with �0 increasing to finite values, an interaction between fermions and bosons is added.
Beyond a value �0t , fermions form bosonic pairs: in the limit �0 → +∞, all the fermions
condense into bosons, leading to a purely bosonic system. In this interpretation, the tricritical
point may be seen as a particular point on the critical line where the interaction is such that
an additional symmetry between fermions and bosons appears. This might correspond to
super-symmetry appearing in conformal field theories describing the tricritical Ising model
[17]. To our knowledge there is no evidence of super symmetry derived directly from a lattice
model: the exact lattice action (43) could be a good way to see how super symmetry may
emerge from a lattice model. Of course all we said so far is only speculative and needs more
study to confirm or infirm this interpretation.

4. Effective action in the continuum limit

In the Ising model, the fermionic action on the lattice is quadratic and the corresponding
Grassmann integral can actually be computed exactly by transformation into the momentum
space for fermions. The situation for the BC model is less simple, as there is the non-Gaussian
interaction part in (41), which contains terms of order up to 8th in fermions. The Grassmann
integral leading to the partition function can no longer be computed directly by a simple
Fourier substitution. In this sense the two-dimensional BC model is not integrable. However
it is still possible to extract physical information by taking the continuous limit of the BC
lattice action like (33), or (41), and analysing this limit using tools from quantum field theory.

4.1. Effective fermionic field theory

We would like to obtain an effective fermionic theory for the BC model up to order 2 in
momentum k from the previous calculations, with two variables per site, in order to analyse
the critical behaviour of the model. In the Ising model, the critical behaviour is given, in
the continuous limit, by a mass-less theory that follows from two-variable action. In the
following, we will see how to compute the mass of the BC model in its effective Gaussian
part. The condition of the zero effective mass will already give the critical line in the (T ,�0)
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plane for BC. For the location of a tricritical point on that line one needs more sophisticated
analysis taking into account the stability of the kinetic part of the action, which is in turn
affected by the presence of the interaction. In the infrared limit, the spectrum is given by
expanding the effective action, or rather the corresponding partial integral Zk in Z =∏k Zk,
up to the second order in the momentum k. The coefficient in front of the term k2 in the basic
factor Zk of the momentum-space spectrum for Z is the stiffness of the model. It dominates
all contributions from the kinetic part of the action. For the Ising model, the stiffness is
always a strictly positive coefficient. In this case, the only singularity in the spectrum then
follows from the condition of vanishing mass, resulting the Ising critical point. Here in the
BC model, we will show that the effective stiffness coefficient can also vanish at a special
point somewhere on the line of the critical points in (T ,�0) plane, rendering the spectrum
unstable and changing the nature of the singularity. This happens for large enough g0, as �0

increases. We intend to identify the above singular point as an evidence for the appearance of
the tricritical point, together with a segment of the first-order phase transitions at critical line
at sufficiently strong dilution. In order to be able to perform the QFT analysis of the above
kind, we ought to eliminate the bosonic nilpotent fields from the action, being interested in
the low-momentum (small k) sector of the theory, and making reasonable approximations
whenever necessary. This program also implies a more symmetric way of integration over
the nilpotent fields. Instead of integrating over the variables τmn and τ̄mn as in equation (43),
we now proceed by integrating first over η̄mn and τ̄mn in equation (41), making use of the
definition of the integral. This results the reduced integral with a new action

Z = (2 e� cosh2 K)N
∫ ∏

m,n

dc̄mn dcmn dηmn dτmn[cmnc̄mn + ηmnqmn + τmnq̄mn + ηmnτmn]

× exp(SIsing + Sint), (46)

where SIsing is given in (44), while

Sint = g0

∑
m,n

ηmnτmn[(1 − γ ηm−1n)(1 − γ τmn−1) + t2cm−1nc̄mn−1], (47)

and

q̄mn = cmnc̄mn + tcmn(cm−1n − c̄mn−1) = cmn[c̄mn + t (cm−1n − c̄mn−1)],
(48)

qmn = cmnc̄mn + t c̄mn(cm−1n − c̄mn−1) = [cmn − t (cm−1n − c̄mn−1)]c̄mn.

It is also useful to note that q2
mn = q̄2

mn = 0, and qmnq̄mn = 0. The free-fermion Ising
part of the action SIsing in (46) at this stage remains unchanged and is given by the standard
expression (44). The above integral (46) includes as well the product of quadratic polynomial
terms like cmnc̄mn +ηmnqmn +τmnq̄mn +ηmnτmn, which cannot be written as a block exponential.
However, when integrating over the remaining variables ηmn and τmn, it is easy to realize that
these polynomial terms roughly impose the following substitution rules in the action Sint:

ηmnτmn → cmnc̄mn, ηmn → q̄mn, τmn → qmn. (49)

In a sense, the above rules can be considered as an operation of approximate Dirac delta
functions on the variables ηmn and τmn, replacing them by fermions. These rules of
correspondence though are not exact: when expanding the exponential of Sint into a series,
the terms will appear that couple to each other to give cmnc̄mn but not qmnq̄mn = 0 as given by
the above substitution rules. For example, terms such as

(g0ηm+1nτm+1nγ ηmn) × (g0ηmn+1τmn+1γ τmn), (50)
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instead of vanishing, lead to a contribution in the effective action equal to

g2
0γ

2cmnc̄mncm+1nc̄m+1ncmn+1c̄mn+1. (51)

Therefore there are more terms in the final effective action Seff(cmn, c̄mn) than in that resulting
from the above substitution rules. However, we would like to apply approximations to the
term with interaction, and the higher order corrections of the above kind can be neglected
within this scheme anyhow. From an effective action that follows from (46), we intend to
obtain the basic momentum-space factor Zk of Z up to order 2 in momentum k, in order to
study the stability of the free fermion spectrum.

In the case of the pure Ising model at criticality, the factor Zk gives basically a (m2 + k2)

contribution to the partition function and free energy at small momenta, with mass m2 = 0
at the critical point [30, 38]. In fact, there is also the stiffness coefficient λ in front of k2

in this term, k2 → λk2. In the Ising case, this stiffness coefficient is non-singular at the
critical point and can be fixed simply by its finite value at the critical temperature. In the BC
case, however, we have a line of critical points as �0 varies from negative to positive values.
Respectively, the stiffness parameter λ = λ(�0) also varies with a variation of the chemical
potential �0 along the critical line. The point is that in the BC case the effective stiffness
coefficient vanishes at some position at the critical line, for a sufficiently strong dilution,
which may eventually be identified as the tricritical point of the BC model. We intend to apply
an Hartree–Fock–Bogoliubov (HFB)-like approximating scheme in the momentum space in
order to gain a modification of the above Ising like behaviour provided by the presence of the
interaction in the BC case. This assumes a self-consistent calculation of the corrections which
modify the parameters in the mass term and in the kinetic part of the action, and eventually
modify the stiffness coefficient, due to the HFB decoupling of the interaction5.

Among the terms that contribute in Zk to the second order in momentum are in any
case those coming from the kinetic part of the free-fermion quadratic piece of the action,
equation(44). In the continuous limit, with cm−1n, c̄mn−1 → c − ∂xc, c̄ − ∂yc̄, these terms are
combinations of c∂xc or c̄∂xc, and c̄∂y c̄ or c∂yc̄. From the above rules (49), we expect that the
effective action will contain as well quartic contributions such as cc̄∂ic∂j c̄, with i, j = x, y,
at the lowest order. This term is degree 4 in Grassmann variables and 2 in derivatives. The
expansion of the exponential of such terms will give corrective coefficients to the k2 behaviour,
and may thus change the order of the transition if the renormalized stiffness vanishes. We also
have to consider not only the direct substitution of the variables with the rules given above,
but also the possible correction terms like (51) that contribute to the stiffness. We should
also drop terms which contain a ratio of number of derivatives to the number of Grassmann
variables higher strictly than 1/2 as their effect is expected to provide next-order corrections
to the basic approximation scheme outlined above. After some algebra, we find the following
terms that contribute to the effective action

Seffective = SIsing + g0

∑
m,n

cmnc̄mn[(1 − γ q̄m−1n)(1 − γ qmn−1) + t2cm−1nc̄mn−1]

+ g2
0γ

2
∑
m,n

cmnc̄mncm+1nc̄m+1ncmn+1c̄mn+1 + · · · . (52)

5 Let us remember that the interaction terms in the BC model appear solely due to the presence of the dilute (vacancy)
sites. Respectively, the strength of interaction (the coupling parameter g0) increases with increasing rate of dilution,
with variation of the chemical potential �0. The corrections with g0 may thus appear in the mass term and the
stiffness coefficients of the BC effective action within mean-field HFB analysis. In fact, as we shall see below, the
relevant g0 correction to the mass at the Gaussian (free-fermion) level already follows when we extract the effective
action from (46) and (49), while the kinetic corrections, that at lattice level may be attributed to the correlations of
the Ising degrees and vacancies at the same and neighbouring sites, are to be extracted self-consistently within the
HFB scheme from the residual interaction in the effective action.

16



J. Phys. A: Math. Theor. 41 (2008) 405004 M Clusel et al

The above effective action defines some lattice fermionic theory with interaction. We will
analyse it further on in the momentum space at low momenta, which corresponds to the
continuum-limit interpretation of the model.

4.2. Continuum limit

In the continuous-limit interpretation of the above action, we replace cmn by c = c(x, y)

and c̄mn by c̄ = c̄(x, y), assuming also the substitution rules like cm−1n = c − ∂xc and
cmn−1 = c − ∂yc. After a Fourier transformation of the fields, this corresponds to the
low-momenta sector of the exact lattice theory around the origin k = 0. In particular,
qmn → q = cc̄(1 − t) + t (∂xc − ∂yc̄)c̄ and q̄mn → q̄ = cc̄(1 − t) − tc(∂xc − ∂yc̄). The free
Ising part SIsing from (52) gives simply

SIsing =
∫

dx dy[(1 − 2t − t2)cc̄ − t (t + 1)c̄∂xc + t (t + 1)c∂y c̄ − tc∂xc + t c̄∂y c̄]. (53)

In the above action, one can readily distinguish the mass term and the kinetic part, provided
one assumes the QFT interpretation of the associated integrals6. Note that the next-order
momentum term with product ∂x∂y is neglected in the above action (53) at the backbone of
the first-order ∂x, ∂y terms7. In the continuous limit, the last term of the BC action (52) gives
cc̄∂xc∂x c̄∂yc∂y c̄, which is fourth order in derivatives and sixth degree in Grassmann variables.
The ratio of these numbers is 2/3 which is higher than 1/2, and therefore this term can be
discarded, as explained above. The term in factor of g0 in (52) contains q̄m−1n and qmn−1

which need to be expanded up to the order 2 in derivatives, with ∂xxq̄ = 2(1 − t)∂xc∂x c̄, and
∂yyq = 2(1 − t)∂yc∂y c̄. The effective action finally can be written in the continuous limit as

Seff = SIsing +
∫

dx dy{g0cc̄ + g0cc̄[t (t + 2γ )∂yc∂x c̄ − γ (1 − t)(∂xc∂x c̄ + ∂yc∂y c̄)]}. (54)

In the following, we use this effective action to obtain information on the phase diagram of
the BC model.

5. Spectrum analysis and phase diagram

In this section we analyse the critical properties of the effective action (54) and the low energy
spectrum Zk of Z in the momentum-space representation. In particular we develop a physical
argument for the existence of a tricritical point on the phase diagram from the above fermionic
action. The critical line follows already from the condition of the zero mass. At the tricritical
point, we assume that the effective stiffness coefficient in factor Zk vanishes. The Hartree–
Fock–Bogoliubov (HFB)-like approximation scheme will be used to count properly the effects
of the interaction [45–47].

5.1. Phase diagram

The BC model effective action of (54) includes the free-fermion Gaussian part and the
quartic interaction. The quadratic part of the whole action is merely formed from SIsing,

6 The Ising mass is easily seen from (53) to be mIsing = 1 − 2t − t2, which must vanish at the critical point. Indeed,
the condition of vanishing mass 1 − 2t − t2 = 0 gives tc = √

2 − 1, alias Kc = J/Tc = 1
2 ln(1 +

√
2), in agreement

with the exact solution of this model on a lattice. The ordered phase corresponds to negative mass, with t → 1 as
T → 0. The structure of the action (53) rather implies the interpretation of the pure 2D Ising model in terms of the
Majorana fermions [30, 37, 38]. Respectively, one may pass to the Dirac interpretation by doubling the number of
fermions in the action.
7 Despite that these terms with ∂x and ∂y are linear in momentum in the action they contribute as k2 into the spectrum
factor Zk of Z, while their product may only contribute at the level of next-order corrections to Zk , as m → 0.
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but the remaining interaction term in the effective action (54) also includes quadratic term
g0cc̄. This term, added to the Ising part of the action, will modify the original Ising mass
mIsing = 1 − 2t − t2, and the kinetic part. The condition for the critical point in the
pure Ising case is then given by mIsing = 0 [30, 37, 38]. In the BC case, the presence
of the Gaussian correction g0cc̄ will modify the mass term in the effective BC action:
mIsing → mBC = 1 + g0 − 2t − t2, which vanishes at the critical line8.

The approximations we intend to apply to tackle the remaining quartic part of the BC action
(54) consist in replacing, in different possible ways, the two of four fermions by variational
parameters, or the effective binary averages, which are then specified self-consistently from
the resulting Gaussian action. This may be viewed as a kind of the HFB like approximation
method, which proved to be effective in systems of quantum interacting fermions, like BCS
theory of ordinary superconductivity. This also implies that calculations are to be performed
rather in the momentum space than in the real space, and the corresponding symmetries are
to be taken into account. The application of the HFB scheme also implies that the interaction
may not be necessarily weak. From the explicit form of the quartic part of the interaction in
(54), it can be seen that the decoupling of the quartic part of Sint produces terms which only
modify the kinetic terms in the effective action, with calculations being up to order k2 in the
Zk factor. This modification might be significant at strong dilution, rendering the appearance
of the tricritical point and changing the nature of the phase transition from second to the first
kind. In the next subsection, we consider in more detail the critical line of the BC model in the
(T ,�0) plane, assuming dimensionless temperature T and chemical potential �0 normalized
by the exchange energy J (the isotropic case) from the BC Hamiltonian.

5.2. Critical line

The equation for the BC critical line we consider in this section is the one that follows from
the condition of vanishing mass, mBC = 1 +g0 −2t − t2 = 0. In a detailed form, this equation
reads

tanh2

(
1

T

)
+ 2 tanh

(
1

T

)
− 1 = e

�0
T

2 cosh2
(

1
T

) . (55)

This equation may be written as well in the form:

sinh

(
2

T

)
= 1 +

1

2
e

�0
T , (56)

which in turn admits the explicit solution for �0 as function of T in the form:

�0 = T ln

[
2 sinh

(
2

T

)
− 2

]
. (57)

This results the critical line for the BC model shown in figure 1. In the limit �0 → −∞,
from either of equations (55) and (56), we recover the Ising case, with Tc = 2.269 185. For
finite �0, as vacancies are added, we obtain a slowly decreasing function for Tc = T (�0),
which terminates at the end point (Tc = 0,�0 = 2) at zero temperature, as it can be deduced
from (55).

On the critical line, with zero mass, only derivative contributions remain in the action
equation (54): the Ising part which gives the free fermion kinetic terms, and that which gives

8 The additive corrections that may contribute to the mass term from the non-Gaussian part of the action (54) are k2

dependent and vanish as k2 → 0. They may be neglected. In the effective action (54), the principal modification of
the mass term due to vacancies is realized already at the Gaussian level by the g0cc̄ term, as it is commented above.
The effect of the non-Gaussian part in (54) is merely that it produces corrections to the kinetic terms, after the HFB
decoupling of the interaction.
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Figure 1. Comparison between critical line equation (55) (plain red line) and numerical results
from Monte Carlo simulations. The black filled dots are from figure 1, da Silva et al [9] (the
Wang–Landau method). The cross symbol indicates the tricritical point identified by the same
authors. The blue diamond symbols are from [10], the magenta triangles from [7], and the green
squares from [6] (see also table 1 for explicit numerical values).

the residual interaction between the blockt level and the Ising doublet at the quartic level.
The critical line given by (55) is plotted in figure 1, and compared with recent Monte Carlo
simulations by da Silva et al [9, 10]. The agreement between numerical simulations and our
results is very good, the mass of the system (55) being exact in that sense. The agreement is
within 1% over the whole range of variation of �0 on the critical line Tc = Tc(�0), provided
we use as input the Monte Carlo data for Tc, and evaluate theoretically �0 from (57) for
comparison. The numerical data for Tc = Tc(�0) as a function of �0 are given in table 1.
Note that our results are also compatible with exact upper bond obtained by Braga et al [14].

5.3. Stiffness coefficient: Hartree–Fock–Bogoliubov analysis

In this section, we analyse the effect of the quartic terms in the action on the stability of the
free fermion spectrum at zero mass, along the critical line g0 = t2 + 2t − 1, by considering the
effect of the interaction part onto the kinetic part within the HFB-like approximating scheme
[45–47]. The Ising part can be easily written in the momentum-space representation, after
having defined the following transformations:

c(r) = 1

L

∑
k

ck exp(ik.r), c̄(r) = 1

L

∑
k

c̄k exp(−ik.r). (58)

Using these transformations, the Ising part of the action gains block-diagonal form, and we
find

SIsing =
∑
k∈S

it (t + 1)(kx − ky)(ckc̄k − c−kc̄−k) + 2itkxckc−k + 2itky c̄kc̄−k, (59)

where S is the set of Fourier modes that correspond to half of the Brillouin zone: if k is already
included in S then −k is not to be included in S and vice versa, so that couples of modes
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Table 1. Numerical values of the critical points (Tc(�0), �0): comparison of different numerical
simulations and equation (55).

Temperature Tc(�0)

Reference Reference Reference [10] Equation
�0 [6] [7] (Wang–Landau method) (55)

−0.5 1.794(7) 1.816(2) 1.7781
0. 1.695 1.681(5) 1.714(2) 1.6740
0.5 1.567 1.584(1) 1.5427
1.0 1.398 1.413(1) 1.3695
1.5 1.150 1.155(1) 1.1162
1.87 0.800 0.800(3) 0.7712
1.9 0.764(7) 0.755(3) 0.7221
1.92 0.700 0.713(2) 0.6841
1.95 0.650 0.651(2) 0.6135
1.962 0.620 0.619(1) 0.5776
1.969 0.600 0.596(5) 0.5531
1.99 0.550 0.555(2) 0.4441
1.992 0.500 0.499(3) 0.4270

(k,−k) fill up the Brillouin zone exactly once. In fact, terms with k and −k are already
combined together in (59). The mass term is dropped in (59) since we are on the critical line.
The quartic term can be written in the Fourier space as

Sint = 1

L2

∑
k1+k2=k3+k4

V (k2,k4)ck1ck2 c̄k3 c̄k4 , (60)

with the potential

V (k2,k4) = −αkx
2 k

y

4 + α′(kx
2 kx

4 + k
y

2 k
y

4

)
,

(61)
α = g0t (t + 2γ ), α′ = g0γ (1 − t).

Up to now we only expressed the action in the Fourier space, or in the momentum-space
representation, without further approximations. In order to see if the second-order line is
stable, we use a quantum mean-field-like approximation in momentum space, similar to the
HFB method. To do so, we decompose the fourth-order interacting terms into sums of
quadratic terms with coefficients to be determined self-consistently. These coefficients are
actually two-point correlation functions for fermions in the momentum space. The interaction
can be decoupled in different ways. For example, considering the terms contributing to the
Ising action, we may take account of the averages 〈ckc̄k〉, 〈c−kc̄−k〉, 〈ckc−k〉 and 〈c̄kc̄−k〉.
There are also three different ways to decouple the interacting term, since ck1 can be paired
with either of ck2 , c̄k3 or c̄k4

ck1ck2 = 〈ck1ck2〉 + (ck1ck2 − 〈ck1ck2〉) ≡ 〈ck1ck2〉 + δc1c2 , (62)

where δc1c2 is assumed to be a small fluctuation. In this case, from equation (59), the average
is nonzero only for k1 = −k2 = k or −k, with k ∈ S. We can pair the other terms by
writing the action in the coefficient gS = 3 different possible ways that are compatible with
the symmetries of equation (59), and by using the fermionic rules

Sint = 1

L2gS

∑
k1+k2=k3+k4

V (k2,k4)
[(〈

ck1ck2

〉
+ δc1c2

)(〈
c̄k3 c̄k4

〉
+ δc̄3 c̄4

)
− (〈ck1 c̄k3

〉
+ δc1 c̄3

)(〈
ck2 c̄k4

〉
+ δc2 c̄4

)
+
(〈
ck1 c̄k4

〉
+ δc1 c̄4

)(〈
ck2 c̄k3

〉
+ δc2 c̄3

)]
. (63)
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The next step is to discard terms that are proportional to the squares of fluctuations δ2, and keep
the others. After some algebra, we obtain the mean-field quadratic operator for the interaction
term as follows:

Sint = 1

L2gS

∑
k,k′∈S

4ckc−k〈c̄k′ c̄−k′ 〉V (k,k′) + 4c̄kc̄−k〈ck′c−k′ 〉V (k′,k)

+ ckc̄k(〈ck′ c̄k′ 〉v(k,k′) + 〈c−k′ c̄−k′ 〉v(k,−k′))
+ c−kc̄−k(〈ck′ c̄k′ 〉v(−k,k′) + 〈c−k′ c̄−k′ 〉v(−k,−k′)), (64)

where we have defined the potential

v(k,k′) = −V (k,k) − V (k′,k′) + V (k,k′) + V (k′,k). (65)

In the above expressions, there are three different kinds of quantities that contribute to the
action, for example sums like

∑
k ckc̄k,

∑
k ckc̄kki or

∑
k ckc̄kkikj , with i, j = x, y. The first

term gives a contribution to the total mass, the second one corresponds to current operators,
and the third one can be thought as a dispersion energy tensor. Considering the symmetries of
the Ising part, and the fact that the action should be invariant by a dilation factor at criticality,
we may only take account of current operators: we can drop the first two terms in the potential
v(k,k′) defined in equation (65). We define therefore the following unknown parameters
(i = x, y):

ti = i

2L2

∑
k∈S

(〈ckc̄k〉 − 〈c−kc̄−k〉)ki,

(66)
ui = i

L2

∑
k∈S

〈ckc−k〉ki, ūi = i

L2

∑
k∈S

〈c̄kc̄−k〉ki .

In this case, it is easy to rewrite, from the property v(k,k′) = −v(−k,k′) = −v(k,−k′),
the effective mean-field action (64) as

Sint = 1

gS

∑
k∈S

4ickc−k[(αūy − α′ūx)kx − α′ūyky] + 4ic̄kc̄−k[−α′uxkx + (αux − α′uy)ky]

+ 2i(ckc̄k − c−kc̄−k)[(αty − 2α′tx)kx + (αtx − 2α′ty)ky]. (67)

We make the further assumption that, by symmetry invariance in the momentum space, there
exists a solution satisfying ūy = ux, ūx = uy and tx = −ty , so that

Sint = 1

gS

∑
k∈S

4ickc−k[(αux − α′uy)kx − α′uxky] + 4ic̄kc̄−k[−α′uxkx + (αux − α′uy)ky]

− 2i(ckc̄k − c−kc̄−k)(kx − ky)(α + 2α′)tx. (68)

The total effective action (with zero mass) can finally be written as

Seff =
∑
k∈S

i

[
t (t + 1) − 2

gS

(α + 2α′)tx

]
(kx − ky)(ckc̄k − c−kc̄−k)

+ i
4

gS

[(gS

2
t + (αux − α′uy)

)
kx − α′uxky

]
ckc−k

+ i
4

gS

[
−α′uxkx +

(gS

2
t + (αux − α′uy)

)
ky

]
c̄kc̄−k, (69)

or in a more compact form as

Seff =
∑
k∈S

ic(kx − ky)(ckc̄k − c−kc̄−k) + 2i(akx − bky)ckc−k + 2i(−bkx + aky)c̄kc̄−k, (70)
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with the following coefficients:

a = t + 2
αux − α′uy

gS

,

b = 2α′ ux

gS

, (71)

c = t (t + 1) − 2tx
α + 2α′

gS

.

The partition function can then be written as a product over the Fourier modes Z =∏k∈S Zk,
with

Zk = k2[A + B sin 2θk], (72)

θk being the angle of the vector k, and

A = c2 − 4ab, B = −c2 + 2(a2 + b2). (73)

We assume that |A| is larger than |B| on the second-order critical line, until a singular point is
reached, where eventually A2 = B2. Indeed, the expression (72) is valid only if the elements
A + B sin 2θk are all strictly positive, which is the case only if A2 > B2. This will be
checked using numerical analysis. Beyond this point, the effective action is unstable and has
to be modified to incorporate further corrections. In a bosonic �6 Ginzburg–Landau theory
describing a first-order transition, the tricritical point is usually defined as the point where
both coefficients of �2 and �4 terms vanish. By analogy, in the present fermionic theory, it is
tempting to associate the previous singular point with the effective tricritical point.

The parameters tx, ux and uy are determined self-consistently from the definition
equations (66). In the continuous limit, these reduce to

tx = c

4π

∫ π

0
dθ

1 − sin 2θ

A + B sin 2θ
= c

4B

(
−1 + (A + B)

sign(A)√
A2 − B2

)
,

ux = 1

2π

∫ π

0
dθ

a sin 2θ − b

A + B sin 2θ
= 1

2B

(
a − (aA + bB)

sign(A)√
A2 − B2

)
, (74)

uy = 1

2π

∫ π

0
dθ

a − b sin 2θ

A + B sin 2θ
= 1

2B

(
−b + (bA + aB)

sign(A)√
A2 − B2

)
.

Numerically, we proceed the following way: starting from T slightly below Tc(−∞), we solve
the consistency equations for tx, ux and uy with the value of �0 given by the critical line (55)
at that given temperature. The solutions are then plugged into the coefficients A(T ) and B(T ),
and we plot A(T )2 − B(T )2 as a function of T, as shown on figure 2. We repeat the process
by decreasing the temperature until we reach the point where this quantity vanishes.

By doing so we find a singular point approximately located at (T ∗
t ,�∗

0,t) �
(0.42158, 1.9926). This is close to the tricritical point Tt given by Monte Carlo simulations:
(Tt,�0,t) � (0.610, 1.9655) [9], and (Tt,�0,t) � (0.609(3), 1.966(2)) [10]. If we assume
that T ∗

t represents the tricritical point, the mean-field like treatment of the underlying field
theory underestimates the fluctuations, rendering the second-order critical line more stable at
lower temperature as compared to Monte Carlo results, as we approach (Tc = 0,�0 = 2)

along the critical line. Stronger fluctuations can be simulated by lowering the value of gS ,
which increases (lowers) the value of T ∗

t (�∗
0,t), respectively. Instead of gS = 3, taking

gS = 2.5 for example leads to a T ∗
t � 0.48, closer to the Monte Carlo results. This can be

achieved precisely by incorporating more diagrams in the computation of the effective free
energy [46]. Also, due to the fact we are in a region near (Tc = 0,�0 = 2) where the change in
temperature is large compared to the change of �0 (the slope is vertical at this point as is seen
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Figure 2. Stiffness of the spectrum: solution of HFB self-consistent equations (74) for the
coefficient A(T )2 − B(T )2 as function of T. The temperature where A(T )2 − B(T )2 = 0 gives
the location of the singular point T ∗

t .

in figure 1), it is more difficult to obtain a precise value of T ∗
t within a mean-field treatment.

It is however important that the BC fermionic action (54) finally predicts the existence of a
special (tricritical) point at the critical line somewhere close to the termination point of that
line (Tc = 0,�0 = 2)9. The tricritical point is defined, within this interpretation, as the
point of the destruction, or loss of stability, in the effective fermionic spectrum of the action
due to the modifications introduced into the kinetic part by a sufficiently strong dilution of a
system by the vacancy states, which corresponds to large enough coupling constant g0, as it
was commented above.

6. Conclusions

In this paper, we have considered the physics of the BC model as a fermionic field theory.
Using Grassmann algebra, we have shown that the model can be transformed into the quantum
field theoretical language in terms of Grassmann variables. This fermionic theory for the BC
model is described by an exact fermionic action with interaction on a discrete lattice. This
action can be reduced, after some transformations, in the continuum limit and low energy
sector, to an effective continuum field theory which includes a modified Ising action, which
is quadratic in fermions, and a quartic interaction. From there we have extracted the exact
mass of the model and analysed the effect of the quartic term on the stability of the free
fermion spectrum in the kinetic part. The condition of the zero mass already gives the critical
line of phase transition points in the (T ,�0) plane, which is found to be in a very good
agreement with the results of Monte Carlo simulations over the whole range of variation of
concentration of the non-magnetic sites governed by �0. The location of the tricritical point
needs for additional analysis of the excitation spectrum of the integral factors Zk for Z around

9 It may also be noted that the Monte Carlo values for (Tt,�0,t) seemingly lie practically on the theoretical curve for
the critical line (55)–(57). For instance, taking as input value Tt � 0.609(3) [10], from (57) we find �0,t � 1.952,
which is sufficiently close to the M-C value �0,t � 1.966(2) from this reference [10], the deviation being probably
less than 1%.
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the origin in the momentum space. In particular, the stiffness of the excitation spectrum (the
coefficient in front of the k2 term in factors Zk as we expand the dispersion relation for Z in
momentum variables) vanishes at a singular point T ∗

t that may be identified to the tricritical
point Tt. A Hartree–Fock–Bogoliubov analysis gives an approximate location for this point on
the critical line which can be compared to the numerical results of Monte Carlo simulations.
The precise location of the instability point could be achieved by taking into account further
diagrams contributing to the effective free energy. In any case, we have shown the existence
of a singular point on the critical line, by studying the stability of the kinetic spectrum of the
action at this line, where the nature of the transition is to be changed. The main result of
this paper is the possibility of studying precisely first-order transition driven systems from a
fermionic point of view using Grassmann algebra. The method we have applied may be useful
as well for other systems where effective field theory is presented by an action similar to that
of equation (54). In essence, this is a one of the simplest form of an action with 4-fermion
interaction that can be written out from a unique pair of Grassmann variables at each point of
the real space. Application of the same method to other extensions of the BC Hamiltonian,
such as the Blume–Emery–Griffiths model [3], is also possible. Finally, at intermediate stages,
a partial bosonization of the system leads to a mixed representation of the model not only in
term of fermions but also in term of hard core bosons, as written explicitly in the lattice action
of equation (43). The representations of this kind could be useful also to look for a possible
interpretation of the tricritical point in the BC model as a special point in the phase diagram
where an additional hidden symmetry between fermions and bosons may appear.
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